Меню Рубрики

Билирубин в крови коровы

Билирубин в крови коровы

В организме, как человека, так и животных постоянно происходят разнообразные процессы, связанные с синтезом одних веществ, распадом других и множественные превращения одних соединений в другие. Примерами таких процессов могут служить синтез гормонов, ферментов, непрерывный распад и синтез белковых молекул, азотистый обмен, синтез и распад гема и многое другое.

Большой интерес в плане изучения данного вопроса представляет образование пигмента билирубина.

Билирубин – это красящее вещество, желточный пигмент, которое находится в крови и, впоследствии, выводится с желчью. Образуется данный пигмент в результате распада гемоглобина и миоглобина – белков крови, которые в больших количествах содержатся в эритроцитах.

Молекула билирубина состоит из четырёх пиррольных простых кольц, которые соединены линейно друг с другом. Определенная молекулярная масса билирубина приравнена 548,68. Согласно физическим свойствам обычный чистый билирубин можно охарактеризовать как кристаллическое вещество, всегда трудно растворимое в воде, глицерине, эфире, а также слабо растворимое в спирте, при этом немного лучше – в хлорбензоле, хлороформе и различных разведенных растворах щелочей.

В организме человека и животных билирубин образуется под действием фермента биливердинредуктазы из биливердина, зелёного пигмента, который также является продуктом распада гема. Будучи оксидирован, билирубин может превращаться обратно в биливердин. Этот цикл реакций стал причиной гипотезы, что билирубин является главным клеточным антиоксидантом

Существует несколько форм билирубина: свободный (непрямой) и связанный (прямой). Так, при разрушении постаревших эритроцитов в селезенке, костном мозге и печени – так называемых кроветворных органах, выделяется свободный, или непрямой билирубин.

Непрямой билирубин связывается в крови с альбуминами и транспортируется в печень, где под воздействием ферментов преобразуется в соединение с глюкуроновой кислотой – билирубин прямой, или связанный. Прямой билирубин и незначительное количество непрямого (вместе они составляют билирубин общий) с желчью выводятся в кишечник, где и утилизируются – под воздействием микрофлоры кишечника данные пигменты превращаются в новые химические соединения и выводятся из организма с калом и мочой [1 с. 53].

При повышении концентрации билирубина в сыворотке крови свыше 27 – 34 мкмоль/л появляется желтуха (лёгкая форма – до 85 мкмоль/л, среднетяжёлая – 86 – 169 мкмоль/л, тяжёлая форма – свыше 170 мкмоль/л). У новорожденных наблюдается физиологическая желтуха в первую неделю жизни (с повышением общего билирубина крови за счёт фракции непрямого билирубина), т.к. отмечается усиленное разрушение эритроцитов, а билирубин-конъюгирующая система несовершенна. Гипербилирубинемия может быть результатом повышенной продукции билирубина вследствие повышенного гемолиза эритроцитов (гемолитические желтухи), пониженной способности к метаболизму и транспорту против градиента в желчь билирубина гепатоцитами (паренхиматозные желтухи), а также следствием механических затруднений желчевыделения (обтурационные – застойные, механические, холестатические желтухи).

Для дифференциальной диагностики желтух используют комплекс пигментных тестов – определение концентрации в крови общего, прямого билирубина (и оценку по их разности уровня непрямого билирубина), а также определение концентрации в моче уробилиногена и билирубина. Билирубин показывает, как работает печень. Повышение уровня общего билирубина – симптом желтухи, осложнений желчно-каменной болезни, избыточного разрушения эритроцитов.

Важно знать, что непрямой билирубин является сильнейшим тканевым ядом, который нерастворим в воде, и поэтому не может выводиться с желчью и мочой. Наибольшее токсическое воздействие этот яд оказывает на клетки центральной нервной системы, в том числе и головной мозг. Прямой билирубин имеет менее выраженные токсические свойства, он способен растворяться в воде и легко выводится из организма.

Поэтому важно следить за тем, чтобы уровень билирубина в крови не повышался. Обычно в лаборатории определяют общий билирубин, с нормой содержания в крови 2,4-20,5 мкмоль/литр; у новорожденного в течение первых десяти суток жизни билирубин в крови колеблется от 22 мкмоль/л до 120 мкмоль/литр. [2, с. 87].

Цель исследования: Выявить содержание билирубина в крови в зависимости от возраста крупного рогатого скота.

Материалы исследования: в качестве материала исследования использовалась кровь крупного рогатого скота. Забор образцов проводился у животных различных возрастных групп (от 3 месяцев до 10 лет) с использованием вакуум-содержащих систем из яремной вены в верхней трети шеи.

Полученные образцы крови исследовались согласно методу Ван Ден Берга и колориметрическим исследованиям. Метод Ван Ден Берга основан на том, что при воздействии диазореактива Эрлиха на сыворотку крови, содержащую билирубин, образуется азобилирубин (диазосоль), придающий сыворотке розовый цвет. С этой целью к 2 мл испытуемой сыворотки добавляют 4 мл 96 процентного спирта для осаждения белков и смесь центрифугируют в течение 20 минут. К 1 миллилитру прозрачной надосадочной жидкости добавляют 0,5 миллилитров спирта для растворения жирных кислот и 0,25 мллилитров диазореактива. При положительной реакции появляется интенсивное розовое окрашивание. Колличество билирубина определяют колориметрически [4, с. 34]. При этом связанный билирубин реагирует быстро, несвязанный – только после добавления акселератора (кофеин, метанол, мочевина, уксусная кислота). Последний освобождает билирубин из комплекса с белками и тем самым ускоряет реакцию азосочетания. Это наиболее важная в практическом отношении реакция ароматических диазосоединений. Образовавшийся азокраситель ведет себя как кислотно-основной индикатор с несколькими цветными переходами, в сильнокислой среде он окрашен в фиолетовый цвет, в слабощелочной и слабокислой – в розовый, в сильнощелочной среде – в синий или зеленый цвета [4, с. 34].

По результатам исследования были получены следующие данные – образцы крови крупнорогатого скота отличались по степени окраски, которая варьировалась от бледно-розового, до ярко оранжевого. Интенсивность окраски свидетельствует о количестве биллирубина в испытуемых образцах крови, в норме 3,4-17,1 мкмоль/литр, но, в зависимости от возраста, данный показатель уменьшается в пределах физиологической нормы. Так, у трёх месячных телят средние значения билирубина составляли 16,1 мкмоль/литр; у годовалых телят данный показатель составил 10,1 мкмоль/литр, данное значение встречалось у всех обследованных животных; у КРС в возрасте 3 года – 4,7 мкмоль/литр; 5 лет – 3,9 мкмоль/литр; 7 лет – 3,2 мкмоль/литр; в возрасте 10 лет у крупного рогатого скота наблюдается критические значения билирубина в крови – 2,5 мкмоль/литр.

Таким образом, прослеживается тенденция к неравномерному содержанию билирубина в крови исследованных животных в зависимости от возраста.

Полученные результаты, свидетельствуют о том, что в крови уменьшается концентрация пигмента, который образуется при распаде гемоглобина, содержащегося в эритроцитах. Другими словами, значение содержания билирубина на нижней границе может свидетельствовать о том, что в крови животного снизился уровень гемоглобина, из-за чего ткани организма могут получать недостаточное количество кислорода.

Низкие значения содержания билирубина в крови не является показателем патологического процесса, не имеет клинических проявлений и легко может быть восполнен при нормализации режима питания.

источник

Значение биохимии крови в профилактике нарушений обмена веществ у высокопродуктивных коров

Минеральные вещества и витамины, входящие в состав корма, являются для животных, важнейшими элементами питания. Недостаток и избыток их в рационах животных приносит животноводству значительный экономический ущерб за счет снижения продуктивности и плодовитости животных, вызывает заболевание и падеж, ухудшает качество продукции. Минеральные вещества и витамины в рационах должны поступать в организм животных в оптимальных количествах и соотношениях, строго в соответствии с потребностью высокопродуктивных животных. Они необходимы для роста и размножения животных, влияют на функции эндокринных желез, органов кроветворения, регулируют обмен веществ, принимают участие в биосинтезе белка, оказывают влияние на жизнедеятельность микрофлоры пищеварительного тракта и т.д.

Читайте также:  Билирубин в крови на 6 день

Основным источником витаминов и минеральных веществ, для животных являются корма. В то же время минерально-витаминный состав каждого вида корма подвержен значительным колебаниям и зависит от типа почв, климатических условий, вида растений, фазы вегетации, проводимых хозяйствами агрохимических мероприятий, технологии уборки, хранения и подготовки заготовленных кормов к скармливанию и других факторов. Исходя из чего, в хозяйствах часто наблюдается в заготовленных кормах недостаток одних элементов и избыток других, что приводит к возникновению заболеваний, снижению продуктивности, нарушениям в воспроизводстве, ухудшению качества получаемого от коров молока и низкой эффективности использования кормов.

В современных условиях ведения животноводства контроль со стороны специалистов за обеспеченностью животных минеральными веществами и витаминами чрезвычайно важен, так как заболевания связанные с их недостаточностью, дисбалансом и токсичностью, получили сейчас широкое распространение. Дополнительно у животных появляются новые формы витаминно-минеральной недостаточности: остеохондрозы, токсикозы, остеодистрофии, артрозы, слабость конечностей, мышечные дистрофии у молодняка, послеродовые заболевания у высокопродуктивных коров (гипокальцемия, гипофосфатемия, анемия), нарушения в воспроизводительной функции, стрессоустойчивости и неспецифической резистентности организма, отравление экотоксинами, изменение поведения, образование камней в моче- и желчевыводящих путях, нарушение функции щитовидной железы, кислотно-щелочной дисбаланс и т.п.

На практике специалисты обычно наблюдают стертые и осложненные формы, что создает определенные сложности при постановке диагноза. Чаще всего нарушение витаминно-минерального обмена у животных протекает без каких-либо клинических признаков. К примеру, недостаточное или избыточное обеспечение животных минеральными веществами и витаминами ведет к снижению использования питательных веществ корма, продуктивности, качества продукции, воспроизводительной способности и устойчивости к болезням. Подобного рода субклиническую патологию специалисты имеют возможность определить только при проведении биохимического исследования у таких животных. При выявлении недостаточности или токсичности того или иного минерального элемента и витаминов необходимо учитывать все полученные данные: биохимические показатели крови, молока, органов, тканей, экскретов и волосяного покрова; содержание минеральных веществ в почве, воде и кормах; клинические признаки; уровень продуктивности; ответную реакцию организма на витаминно-минеральные добавки (премиксы).

У животных получающих несбалансированный по минеральным веществам рацион кормления отмечаем: ухудшение аппетита, использование питательных веществ корма, снижается воспроизводительная функция и продуктивность, шерстный покров становится тусклым и взъерошенным. Проявлением недостаточности или токсикоза минеральных веществ, служат такие болезни животных, как паракератоз, рахит, сухотка, зоб, тетания, флюороз, анемия и другие. Когда минеральный элемент тесно связан с одним органом или одной функцией организма (например, йод со щитовидной железой), мы будем иметь дело с однообразной и довольно специфической клинической картиной. В то же время специалисты при наличии у животного заболевания зобом должны учитывать, что зоб могут вызвать и гойтрогенные вещества, содержащиеся в рапсе, капусте, сурепке, льняном шроте, белом клевере, соевых бобах, горохе и др., а также некоторые лекарства. Недостаточность таких элементов, как медь и цинк, проявляется весьма своеобразно, в связи с участием их в биосинтезе многих ферментов. Дефицит минеральных веществ у животных может быть вторичным или комплексным, а также возможно одновременное проявление недостатка одного элемента и избытка другого: Си и Zn,Си и Мо, Сd и Zn, Mn и Fe,Cu и Pb.

Доказано, что определенные метаболические процессы могут нарушаться как при недостатке, так и избытке многих элементов. К примеру, аналогичные или очень близкие поражения костного скелета бывают при недостатке Са, Р,Mn,Cu, Mn, Zn, Si, витаминов А и D,а также при избытке Mo, F, Sr, витамина D. Анемию также может вызвать недостаток Fe, Cu, Co, некоторых витаминов или избыток в рационе Mn,Mo,Zn, Cu, Pb,Se. Снижение и извращение аппетита у животных бывает при дефиците Ca, P, Na, Co, Cu,Zn и при избытке многих элементов. Учитывая вышеизложенное специалисты хозяйств при оценке статуса минеральных веществ и витаминов основное свое внимание должны уделять своевременному выявлению у высокопродуктивных животных субклинических стадий их недостаточности, токсикоза и организации необходимых профилактических мероприятий.

Уровень кальция в крови здоровых животных зависит от содержания в рационе Ca,P, Mg, витамина D в рационе, от состояния гормональной системы, желудочно-кишечного тракта, почек и других органов.

Содержание кальция в крови понижается при длительном дефиците его в рационе, плохом усвоении вследствие недостатка витамина D и паратгормона. Гипокальцемия сопровождает остеодистрофию, рахит, послеродовой парез, гипофункцию околощитовидных желез. Гипокальцемия у животных может быть при нефрозе и нефрите. При субклинической форме недостаточности кальция в плазме (сыворотке) крови животных снижается концентрация кальция (ниже 8,0 мг %), повышается активность щелочной фосфатазы, содержание неорганического фосфора и магния; в моче увеличивается концентрация фосфора, магния, оксипролина; в костной ткани повышается (в 2-3 раза) активность щелочной фосфатазы, снижается содержание золы, Cа,P, Mg; уменьшается плотность и прочность костей.

При избытке кальция в корме (2% на сухое вещество) концентрация этого элемента в плазме крови возрастает в 1,4 раза, содержание неорганического фосфора снижается в 3 раза, активность щелочной фосфатазы не изменяется. Повышение кальция в крови у животных может быть при передозировке витамина D, гиперфункции паращитовидных желез.

Все виды обмена веществ в организме животных неразрывно связаны с превращением фосфорной кислоты. Уровень фосфора в крови зависит от тех же факторов, что и содержание кальция. Недостаток фосфора в кормах рациона сопровождается снижением в плазме крови концентрации неорганического фосфора (менее 4мг%), повышением активности щелочной фосфатазы, содержания Mg и Ca; в моче снижается концентрация фосфора и увеличивается количество Mg и Ca (в 5-10 раз), оксипролина; в костной ткани уменьшается содержание фосфора, кальция, магния, золы; снижается плотность и прочность костей. Снижение фосфора в крови отмечают при длительном недостатке его в кормах рациона, плохом усвоении или расстройствах желудочно–кишечного тракта, при недостатке витамина D и паратгормона, при остеодистрофии, рахите, уровской болезни, пеллагре и других заболеваниях животных.

Избыток фосфора в кормах приводит к увеличению в плазме крови количества фосфора, снижению концентрации магния и не изменяет содержание в ней кальция и активности щелочной фосфатазы. Аналогичную картину можно наблюдать в моче животных. Гиперфосфатемию наблюдают при уменьшении секреции паратгормона, при сердечной недостаточности, кетозе, передозировке витамина D, нефритах, нефрозах, токсикозах, мышечном перенапряжении.

Гиповитаминоз D сопровождается в плазме крови возрастанием активности щелочной фосфатазы и снижением концентрации кальция, фосфора и магния. Избыток витамина D приводит к значительному увеличению содержания кальция и фосфора в плазме крови.

При недостатке магния в рационе происходит уменьшение концентрации магния в плазме крови (менее 1,7 мг %), моче и костной ткани, на фоне умеренного снижения содержания Р и Mg в костях, без существенного изменения концентрации Са и Р и активности щелочной фосфатазы. Недостаточность магния в крови у животных, при избытке калия и азота в рационе клинически проявляется симптомами пастбищной тетании, послеродового пареза, остеодистрофии, транспортной болезнью.

Читайте также:  Как лямблии влияют на билирубин

Недостаточность натрия, калия, хлора, серы на обычных товарных фермах с содержанием животных имеющих небольшую продуктивность встречается редко, так как животноводы в рацион кормления животных регулярно добавляют поваренную соль и серосодержащие аминокислоты. Однако у высокопродуктивных животных (5000кг и более) обычно наблюдается недостаточность Na и S, Cl. Дефицит хлора, даже когда в рацион не вводится поваренная соль встречается у животных крайне редко, а недостаточность калия может быть у жвачных при высококонцентратном типе кормления, ввиду того,что зерновые корма составляющие основу рациона при высококонцентратном типе кормления бедны калием. При дефиците калия, серы и хлора в организме у животных снижается их концентрация в плазме крови и моче. Избыток натрия, хлора, калия и серы из организма животных выделяется в основном с мочой.

Функция электролитов в организме животного это поддержание кислотно-щелочного баланса. Снижение щелочного резерва (резервной щелочности) в крови у животного ниже 40 об. % СО² свидетельствует о сдвиге кислотно-щелочного баланса в сторону ацидоза. Метаболический ацидоз регистрируется при высококонцентратном типе кормления коров, вторичной остеодистрофии, расстройствах желудочно кишечного тракта и функции почек, воспалениях. Дыхательный ацидоз у животных наблюдается при сердечной недостаточности и эмфиземе легких.

Недостаточность железа обычно встречается у молодняка и клинически проявляется микроцитарной гипохромной анемией. У лактирующих коров может встречаться железодефицитное состояние проявляющееся нормальной концентрацией гемоглобина на фоне снижения запасов железа в тканях животного. При дефиците железа у телят происходит снижение концентрации этого элемента в плазме крови (≤ 65 мкг %), гемоглобина (≤80 г/л),гематокрита (≤30%), насыщенности трансферрина (≤25%), уменьшение количества эритроцитов (≤4,0*10 в 12степени/л) и увеличение общей железосвязывающей способности плазмы крови (≥ 100 мкмоль/л). Из приведенных выше показателей наиболее надежны для диагностики ранних форм недостаточности железа содержание этого элемента и ферритина в плазме крови, насыщенность трансферрина, концентрация гемоглобина. При избытке железа в рационе (1г/кг сухого вещества) содержание его возрастает в кишечнике, почках, селезенке и печени.

Недостаточность меди у животных субклинически сопровождается снижением церулоплазмина (в 10-15 раз) и содержания меди в плазме крови (менее 60 мкг%), а также уменьшением количества гемоглобина и эритроцитов. Нарушение защитного антимикробного механизма в нейтрофилах — самое раннее проявление недостаточности меди. Избыток меди в рационе животных приводит к накоплению элемента в печени, почках, стенке кишечника; при этом активность церулоплазмина и содержание меди в плазме крови существенно не изменяются, но наблюдается гипокальцемия. Избыток меди и церулоплазмина в крови наблюдают при заболеваниях печени, лейкемии, инфекционных заболеваниях, при беременности.

Недостаток цинка у коров сопровождается снижением его концентрации в плазме крови (ниже 50мкг%), костной ткани, печени, почках, поджелудочной железе, стенке кишечника, сердце, волосяном покрове, слюне.

При избытке цинка наблюдается повышение его содержания в основном в этих же тканях и органах. На долю эритроцитов приходится около 80% от общего количества цинка в крови, где он соединен главным образом с карбоангидразой; в связи с этим повышает содержание цинка в плазме. Концентрация цинка в сыворотке крови на 16% выше, чем в плазме. В практических условиях содержание цинка в плазме крови зависит от вторичных факторов (воспаления, инфекции, опухоли, стресса, избытка кальция, фосфора, меди, свинца, кадмия, фитина понижают цинкемию), возраста и физиологического состояния животных, их генетических особенностей. Клинически недостаточность цинка может возникнуть до существенного снижения его в крови и тканях. Эти же факторы способствуют усилению экскреции цинка с мочой. Наукой к настоящему времени обнаружено около 100 цинксодержащих ферментов, однако ни один из них пока не может быть использован в качестве надежного критерия статуса цинка в организме.

При недостатке цинка в организме снижается активность щелочной фосфатазы в плазме крови, печени, костях. Активность щелочной фосфатазы в плазме крови еще в большой мере зависит от вторичных факторов, чем от содержания цинка. Активность щелочной фосфатазы в плазме крови повышается при недостатке витамина D, остеодистрофии, рахите, гепатите, циррозе печени, а также в конце стельности из-за быстрого роста костной ткани плода. Примечательно, что у телят активность щелочной фосфатазы в 5-15 раз выше, чем у взрослых коров.

Содержание марганца в тканях животных мало изменяется как, при недостатке, так и при его избытке в кормах рациона.

При токсикозе животных содержание марганца возрастает в стенке кишечника, почках, коже, волосе, желчи и кале. При недостатке этого элемента в организме животных снижается активность аргиназы в печени, галактозилтрансферазы в костях, изоцитрат-и пируватдегидрогеназы в почках и мышцах, а также уменьшается концентрация и скорость сульфатирования гликозаминогликанов в хрящевой и костной ткани.

При недостатке в рационе кобальта, что наиболее часто наблюдается у жвачных в период пастбищного содержания, у животных снижается его концентрация в плазме крови (≤0,6 мкг %) и печени (≤0,1 мг/кг сухого вещества), но ввиду низкого содержания кобальта в тканях и биологических жидкостях данные показатели имеют для специалистов небольшую диагностическую ценность. Более объективным показателем является концентрация витамина В-12 в плазме крови (у крупного рогатого скота в норме 250-600 нг/л), печени и молоке. При недостаточности кобальта у жвачных резко снижается активность метилмалонил-КоА-мутазы и метионин-синтетазы, что приводит к накоплению в крови метилмалоновой и формиминоглутаминовой кислот и повышенной экскреции их с мочой. Определение в плазме крови метилмалоната (в норме ≤ 100 мкмоль/л) позволяет выявлять субклиническую форму недостаточности кобальта. При избытке кобальт накапливается в печени и почках.

При недостатке и избытке селена в рационе происходит быстрое изменение его содержания в плазме крови, эритроцитах, сердце, скелетных мышцах, печени, почках, костной ткани, легких, поджелудочной железе, волосе, коже, селезенке, молоко, моче, кале. При этом, в плазме крови и, особенно в волосе концентрация селена при недостатке селена снижается медленнее, чем в тканях. Более надежным прижизненным критерием недостаточности селена является активность селено зависимой глутатионпероксидазы в цельной крови. При дефиците селена в плазме крови возрастает активность аспарттатаминотрансферазы и креатинкиназы в два раз и более, что является следствием патологии мышечной ткани.

Определение содержания общего, белково-связанного, свободного, бутанол-экстрагируемого йода (БЭЙ) и тироксина в плазме крови позволяет выявить недостаток этого элемента; в то же время при избытке йода в рационе концентрация гормонов щитовидной железы и БЭЙ не увеличивается. При вторичной недостаточности йода, вызванной гойтрогенными веществами, содержание БЭЙ в крови также не изменяется, однако в моче при этом резко повышается уровень тиоцианатов. У лактирующих коров концентрация йода в молоке — наиболее яркий индикатор обеспеченности организма йодом. Волос у животных, особенно черный, также хорошо отражает статус йода, однако следует учитывать возможность его загрязнения, в том числе и за счет поглощения элемента из воздуха.

На сегодняшний день в природе известно более 50 каротиноидов, способных превращаться в организме животных в витамин А. Из них наиболее распространенный и эффективный — бета-каротин. Из одной молекулы оранжевого пигмента в организме животных образуется 2 молекулы витамина А. Бета-каротин, кроме участия в синтезе витамина А, имеет свои очень важные функции в организме. Он является природным антиоксидантом, повышает сопротивляемость организма к различным заболеваниям, улучшает воспроизводительную функцию, кроветворение и устойчивость организма к раковым заболеваниям, снижает риск сердечнососудистых заболеваний, воспаления слизистых оболочек, регулирует иммунные реакции, усиливает обмен энергии. Выявлена прямая зависимость между содержанием бета — каротина в организме и воспроизводительной способностью животных.

Читайте также:  Повышенный билирубин прямой и обратный

Ввиду того, что бета-каротин в процессе заготовки и хранения кормов быстро разрушается, обеспечить животных в зимнее- стойловый период бета –каротином в хозяйствах практически невозможно. Под действием света и высоких температур бета-каротин переходит в менее активные формы. Потребность животных в бета — каротине возрастает при избытке в рационе энергии, протеина, клетчатки, сульфатов, железа, тяжелых металлов, нитратов, нитритов, микотоксинов, прогорклых жиров, сапонинов, фитоэстрогенов, при воспаление кишечника, воздействии различных стресс факторов, при лечении кокцидиостатиками и некоторыми другими ветпрепаратами. Повышают усвоение бета-каротина витамины Е и В-12, оптимальные дозы фосфора, цинка, селена, кобальта и жира, углеводы.

Количество каротина в крови подвержено значительным сезонным колебаниям (0,4-1,0 мг% в стойловый период и более 1мг%- в пастбищный).

При дефиците каротина в корме снижается его содержание в крови. Снижение содержания каротина в крови у животных происходит в результате плохого его усвоения под влиянием многих вторичных факторов, гепатитах, гепатозах, недостатке в рационе белка, жиров, легкоусвояемых углеводов, при различных токсикозах в т.ч. нитратных.

Специалисты хозяйств и ветлабораторий должны учитывать тот фактор, что уровень каротина в сыворотке (плазме) крови при хранении образцов снижается, поэтому должны это учитывать при проведении анализов и интерпретации полученных результатов.

Наукой доказано, что в организме животных усваивается только 1/3-¼ часть поступившего в организм животного каротина и только 1/7 его часть превращается в витамин А. При этом от 25 до 50% витамина А депонируется в печени. Полноценное белковое кормление животных, хорошая обеспеченность рациона витамином В-12 и антиоксидантами существенно повышает эффективность превращения каротина в витамин А.

Концентрация витамина А в крови, так же как и каротина,подвержена значительным сезонным колебаниям (25-80 мкг% в стойловый период и 40-150 мкг%- в пастбищный). При снижении содержания витамина А в крови ниже 10мкг% и в печени ниже 50 мкг/г приводит к развитию у животных клинических признаков гиповитаминоза А. Снижение содержания витамина А в крови, печени, молозиве и молоке отмечают при недостатке каротина и витамина А в кормах рациона, плохом их усвоении вследствие имеющихся у животных хронических заболеваний желудочно-кишечного тракта и печени.

Снижение уровня общего белка в сыворотке крови (ниже 60г/л) бывает при длительном недокорме животных, неполноценном питании, остеодистрофии, хронических заболеваниях желудочно-кишечного тракта, почек и печени.

Мочевина является в организме животных основным конечным продуктом азотистого обмена. Процесс синтеза мочевины в организме жвачных животных происходит в печени и стенке рубца. Выделение мочевины из организма происходит главным образом почками. Концентрация мочевины в крови здоровых животных составляет 20-40 мг%, или 3,3-6,7 мкмоль/л. Резкое повышение содержания мочевины в крови (уремия) наблюдается при почечной недостаточности и других заболеваниях почек, а также при скармливании животным больших количеств зеленых бобовых кормов и передозировках в рационе синтетических азотистых веществ (мочевина и др.). В то же время уменьшение содержания мочевины в крови бывает при длительном белковом недокорме, при нарушении мочевинообразовательной функции печени. Данное явление часто бывает у коров с дистрофией печени в результате перенесенного ей кетоза.

Кетоновые тела (бета-оксимасляная кислота, ацетоуксусная кислота, ацетон) промежуточные продукты обмена белков, жиров и углеводов. При повышение уровня кетоновых тел у животных в крови, моче и молоке специалисты говорят о нарушении обмена веществ. Стойкая кетонемия встречается у коров при острой и подострой формах кетоза. При этом соотношение кетоновых тел меняется в сторону увеличения ацетона и ацетоацетата.

При острой форме кетоза в молоке и моче обнаруживаются ацетоновые тела (в моче до 100-500 при норме 5-10 мг%, в молоке до 20-80 при норме до 8 мг%), а в крови кетоновые тела (15-70 мг% и более при норме 1-6 мг%). При этом содержание сахара (глюкозы) в крови больных коров снижается до 30 мг% и ниже при норме 40-60 мг%, а резервная щелочность-ниже 40 об% СО².

У коров больных кетозом в крови увеличивается уровень ЛЖК, НЭЖК, молочной, пировиноградной кислот, тироксина. В рубцовом содержимом снижается рН, повышается концентрация масляной кислоты, аммиака, кетоновых тел.

При хроническом кетозе и вторичной остеодистрофии в крови содержание кетоновых тел повышено незначительно, снижается содержание гемоглобина, мочевины, кальция, резервной щелочности, сахара, а также происходит повышение в крови общего белка, активности аспартатаминотрансферазы и лактатдегидрогеназы.

Билирубин — желчный пигмент, образуется в клетках РЭС из гемоглобина разрушенных эритроцитов. В плазме крови билирубин образует непрочный комплекс с альбумином. Специалисты такой билирубин называют свободным или непрямым. Содержание такого билирубина в крови составляет 1-14 мкмоль/л. Такой билирубин из организма животных выводится с участием печени. В печени происходит экстрагирование билирубина из комплекса с альбумином и его соединение с глюкуроновой кислотой. Образовавшийся комплекс билирубина с глюкуроновой кислотой специалисты называют прямым билирубином. Прямой билирубин выделяется печенью в желчь и поступает в кишечник животного, где превращается в уробилиноген. В сыворотке крови здорового животного содержится в основном непрямой билирубин (до 80% от общего). Уровень общего билирубина повышается у животных больных гемолитической желтухой, усиленном гемолизе эритроцитов, и значительно в меньшей степени при гепатите и циррозе печени. Прямой билирубин находится в крови в незначительных количествах (от 0 до 5мкмоль/л) и повышается при болезнях печени и ее выводящих путей.

Глюкоза (сахар) — является основным источником энергии для организма. На ее долю приходится более 90% всех низкомолекулярных углеводов. Относительно постоянный уровень глюкозы в крови (40-60 мг% или 2,2-4,0 ммоль/л) поддерживается в организме животного гормонально. Гипогликемия у животных встречается при кетозе, вторичной остеодистрофии, послеродовом парезе, некоторых формах ожирения, токсических поражениях печени. Она часто бывает у животных в результате недостатка легкоусвояемых углеводов в кормах, большой потребности высокопродуктивных коров в глюкозе при высококонцентратном типе кормления, при преобладании в рационе кислых кормов. Гипогликемия у животных может быть как стойкой, так и непродолжительной. Непродолжительная гипогликемия бывает при скармливании животным больших количеств сахаристых кормов, а также при испуге животного, высокой температуре, стрессах. Стойкая гипергликемия встречается при сахарном диабете. Ветеринарные специалисты должны помнить, что концентрация глюкозы в сыворотке (плазме) крови при хранении быстро снижается, поэтому определение глюкозы необходимо проводить сразу же после взятия крови, а если нет такой возможности необходимо провести осаждение белков трихлоруксусной кислотой непосредственно на ферме.

источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector